Solve for x log3x 2 log3x 1 log32Solutionlog3 x2 log3 x
Solve for x: log3(x - 2) + log3(x - 1) = log32
Solution
log3 (x-2) + log3 (x-1) = log3 2
now log ab = log a + log b
so log3 (x-2) + log3 (x-1) = log3 (x-2)*(x-1)
log3 (x-2)*(x-1) = log3 2
(x-2) * (x-1) =2
(x^2 -3x +2) = 2
x^2 -3x +2 =2
x(x-3) =0
so x= 3 or x =0
