Hello friend This is for discrete mathematics Can you solve
Hello friend!
This is for discrete mathematics
Can you solve problem 3 for me buddy
With steps!
Solution
Let, n=kq+r , 0<=r<k
q and r are integers.
Case 1: r=0
n/k=q
ceiling(n/k)=q
n-1=kq-1
(n-1)/k=q-1/k
floor((n-1)/k)=q-1
HEnce, floor((n-1)/k)+1=q=ceiling(n/k)
Case 2: k>r>=1
n=kq+r
n/k=q+r/k
ceiling(n/k)=q+1
n-1=kq+r-1
(n-1)/k=q+(r-1)/k
q is an integer and
0<=(r-1)/k<1
HEnce, q is integer part of (n-1)/k and (r-1)/k is fractional part
So,
floor((n-1)/k)=q
floor((n-1)/k)+1=q+1=ceiling(n/k)
HEnce proved
