A1 The following data values are the ages and gender MF of t
A1. The following data values are the ages and gender (M/F) of the students in one section of STAT 1490 from a previous semester.
25M, 20F, 23F, 21F, 18F, 20M, 21M, 21M, 25F, 19M, 23M, 20F, 31F, 21F, 19M, 18F, 19F, 22M, 19F, 18M, 19F, 19F, 20F, 23M, 21F, 19F, 19F
 
 Find the mean, variance, and standard deviation for these data
Solution
  
 Setting up tables,          
 x   x - X   (x - X)^2  
 25   4.148148148   17.20713306  
 20   -0.851851852   0.725651578  
 23   2.148148148   4.614540466  
 21   0.148148148   0.021947874  
 18   -2.851851852   8.133058985  
 20   -0.851851852   0.725651578  
 21   0.148148148   0.021947874  
 21   0.148148148   0.021947874  
 25   4.148148148   17.20713306  
 19   -1.851851852   3.429355281  
 23   2.148148148   4.614540466  
 20   -0.851851852   0.725651578  
 31   10.14814815   102.9849108  
 21   0.148148148   0.021947874  
 19   -1.851851852   3.429355281  
 18   -2.851851852   8.133058985  
 19   -1.851851852   3.429355281  
 22   1.148148148   1.31824417  
 19   -1.851851852   3.429355281  
 18   -2.851851852   8.133058985  
 19   -1.851851852   3.429355281  
 19   -1.851851852   3.429355281  
 20   -0.851851852   0.725651578  
 23   2.148148148   4.614540466  
 21   0.148148148   0.021947874  
 19   -1.851851852   3.429355281  
 19   -1.851851852   3.429355281  
Getting the mean, X,          
           
 X = Sum(x) / n          
 Sum(x) =    563      
           
 Thus,          
 X =    20.85185185 [answer, mean]
 *********************************
Thus, Sum(x - X)^2 =    207.4074074      
           
 Thus, as           
           
 s^2 = Sum(x - X)^2 / (n - 1)          
           
 As n =    27      
           
 s^2 =    7.977207977 [variance]
           
 Thus,          
           
 s =    2.824395152 [standard deviation]


