A1 The following data values are the ages and gender MF of t
A1. The following data values are the ages and gender (M/F) of the students in one section of STAT 1490 from a previous semester.
25M, 20F, 23F, 21F, 18F, 20M, 21M, 21M, 25F, 19M, 23M, 20F, 31F, 21F, 19M, 18F, 19F, 22M, 19F, 18M, 19F, 19F, 20F, 23M, 21F, 19F, 19F
Find the mean, variance, and standard deviation for these data
Solution
Setting up tables,
x x - X (x - X)^2
25 4.148148148 17.20713306
20 -0.851851852 0.725651578
23 2.148148148 4.614540466
21 0.148148148 0.021947874
18 -2.851851852 8.133058985
20 -0.851851852 0.725651578
21 0.148148148 0.021947874
21 0.148148148 0.021947874
25 4.148148148 17.20713306
19 -1.851851852 3.429355281
23 2.148148148 4.614540466
20 -0.851851852 0.725651578
31 10.14814815 102.9849108
21 0.148148148 0.021947874
19 -1.851851852 3.429355281
18 -2.851851852 8.133058985
19 -1.851851852 3.429355281
22 1.148148148 1.31824417
19 -1.851851852 3.429355281
18 -2.851851852 8.133058985
19 -1.851851852 3.429355281
19 -1.851851852 3.429355281
20 -0.851851852 0.725651578
23 2.148148148 4.614540466
21 0.148148148 0.021947874
19 -1.851851852 3.429355281
19 -1.851851852 3.429355281
Getting the mean, X,
X = Sum(x) / n
Sum(x) = 563
Thus,
X = 20.85185185 [answer, mean]
*********************************
Thus, Sum(x - X)^2 = 207.4074074
Thus, as
s^2 = Sum(x - X)^2 / (n - 1)
As n = 27
s^2 = 7.977207977 [variance]
Thus,
s = 2.824395152 [standard deviation]

