A pilot claims that average flight times from Charlotte to M
A pilot claims that average flight times from Charlotte to Miami are not more than 90 minutes. In a random sample of 35 such flights, the average time is 94 minutes with a standard deviation of 9 minutes. Assuming standard deviation of all such flights is 8 minutes, test the claim at the 1% level of significance.
State null and alternative hypotheses:
Determine distribution of test statistic and compute its value:
Construct the rejection region:
Make your decision:
State your conclusion:
Compute the p-value (observed level of significance) for this test:
Solution
a)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   90  
 Ha:    u   >   90   [ANSWER]
********************
b)
Here, as n > 30, we use z distribution. [ANSWER]
               
 As we can see, this is a    right   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    94          
 uo = hypothesized mean =    90          
 n = sample size =    35          
 s = standard deviation =    9          
               
 Thus, z = (X - uo) * sqrt(n) / s =    2.629368792   [ANSWER, TEST STATISTIC]
*****************************
c)
Thus, getting the critical z, as alpha =    0.01   ,      
 alpha =    0.01          
 zcrit =    +   2.326347874      
Thus, Reject Ho if z > 2.326. [ANSWER]
*********************
d)
As z > 2.326, we Reject Ho. [ANSWER]
***********************
e)
Thus, there is significant evidence that the average flight times from Charlotte to Miami are more than 90 minutes. [CONCLUSION]
**********************
f)
Also, the p value is, as this is left tailed,
               
 p =    0.004277177   [ANSWER]      
               


