Write the given expression as an algebraic expression in x c
Solution
1) cos ( 2 tan^-1 (x) )
let tan^-1 x = y
tan y = x
tan theta = perpendicular / base = x/ 1
hypotenuse = sqrt (x^2 + 1)
therefore,
sin y = perpendicular / hypotenuse = x / sqrt (x^2 + 1)
cos y = base / hypotenuse = 1 / sqrt (x^2 + 1)
so , cos (2y ) = cos^2y - sin^2 y = 1 / x^2 + 1 - x^2 / x^2 + 1
cos (2 (tan^-1 x) ) = (1-x^2) / (x^2 + 1)
2) cos ( 2 cos^-1 (x) )
let cos^-1 x = y
cos y = x = base / hypotenuse
perpendicular = sqrt (1- x^2 )
sin y = sqrt (1-x^2) / x
cos (2y) = cos^2y - sin^2 y
= x^2 - (1-x^2) / x^2
= (x^4 - 1 + x^2 )/ x^2
cos ( 2 cos^-1 (x) ) = (x^4 + x^2-1 )/ x^2
3) sin (2 cos^-1 (4/5))
let cos^-1 (4/5) = y
cos y = 4/5 = base / hypotenuse
perpendicular = sqrt ( 5^2 - 4^2 ) = 3
sin y = 3 / 5
sin (2 y ) = 2 sin y cos y
= 2 (3/5) ( 4/5) = 24 / 25
hence,
sin ( 2 cos^-1 (4/5)) = 24/25
