We want to compare the grades on an exam in an intro statist
Solution
For biology majors:
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    90      
 u = mean =    84      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    0.6      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.6   ) =    0.274253118
************
For public health majors:
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    90      
 u = mean =    87      
           
 s = standard deviation =    14      
           
 Thus,          
           
 z = (x - u) / s =    0.214285714      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.214285714   ) =    0.415162129
***************
Thus,
P(at least 90) = P(bio) P(at least 90|bio) + P(pub) P(at least 90|pub)
= 0.72(0.274253118) + 0.28(0.415162129)
= 0.313707641 [ANSWER]

