Crossett Trucking Company claims that the mean weight of its
Crossett Trucking Company claims that the mean weight of its delivery trucks when they are fully loaded is 6,000 pounds and the standard deviation is 150 pounds. Assume that the population follows the normal distribution. Forty trucks are randomly selected and weighed. Within what limits will 95% of the sample means occur? (Round your z-value to 2 decimal places and final answers to 1 decimal place.) Sample means
Solution
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    6000          
 z(alpha/2) = critical z for the confidence interval =    1.96          
 s = sample standard deviation =    150          
 n = sample size =    40          
               
 Thus,              
               
 Lower bound =    5953.514518          
 Upper bound =    6046.485482          
               
 Thus, the confidence interval is              
               
 (   5953.514518   ,   6046.485482   ) [ANSWER]

