find all of the critical points and local maximums and minim
find all of the critical points and local maximums and minimums of each
Solution
for critical point f\'(x) = 0,
1) f(x) = x2 + 8x + 7
f\'(x) = 2x + 8 = 0 => x = -4 (critical point)
f\'\'(x) = 2 >0 (-4 is point of minima)
local minimum = f(-4) = -9
2) f(x) = x3 - 6x2 + 5
f\'(x) = 3x2 -12x = 0 => x =0, x = 4
f\'\'(x) = 6x - 12,
f\'\'(0) = -12 (maxima) => f(0) = 5
f\'\'(4) = 12 (minima) => f(4) = -27
3) f(x) = ln(x2 - 6x + 11)
f\'(x) = (2x- 6)/(x2 - 6x + 11) = 0 => x =3
f\'\'(x) = [2(x2 - 6x + 11) - (2x -6)(2x -6)]/(x2 - 6x + 11)2
f\'\'(3) = 1 (minima) f(3) = ln2
