A basketball player can make 7 out of 10 free throws on aver
A basketball player can make 7 out of 10 free throws on average. Calculate the following probabilities that the basketball player will: a) makes 6 shots in a row? Hint: Find 6 success out of 6 b) misses 6 shots in a row? c) misses the first two shots and make the last two out of 4? Hint: Find 2 success out of 4 d) misses 5 shots out of 6?
Solution
A)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    6      
 p = the probability of a success = 7/10 =   0.7      
 x = the number of successes =    6      
           
 Thus, the probability is          
           
 P (    6   ) =    0.117649 [ANSWER]
***************
b)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    6      
 p = the probability of a success =    0.7      
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.000729 [ANSWER]
*********************
C)
Here,
P(miss, miss, make, make) = 0.3*0.3*0.7*0.7 = 0.0441 [ANSWER]
***********************
d)
This means making 1 attempt.
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    6      
 p = the probability of a success =    0.7      
 x = the number of successes =    1      
           
 Thus, the probability is          
           
 P (    1   ) =    0.010206 [ANSWER]


