Write a computer code to implement the Composite Trapezoidal
     Write a computer code to implement the Composite Trapezoidal Rule quadrature T_h[f] = h(1/2 f(x_0) + f(x_1) + ... + f(x_N-1) + 1/2 f(x_n)), to approximate the definite integral I|f| = integral^b_a f(x) dx, using the equally spaced points x_0 = a, x_1 = x_0 + h, x_2 = x_0 + 2h, ..., x_N= b, where h = (b-a)/N. Make sure that all your codes have a preamble which describes the purpose of the code, all the input variables, the expected output, your name, and the date of the last time you modified the code.![Write a computer code to implement the Composite Trapezoidal Rule quadrature T_h[f] = h(1/2 f(x_0) + f(x_1) + ... + f(x_N-1) + 1/2 f(x_n)), to approximate the   Write a computer code to implement the Composite Trapezoidal Rule quadrature T_h[f] = h(1/2 f(x_0) + f(x_1) + ... + f(x_N-1) + 1/2 f(x_n)), to approximate the](/WebImages/20/write-a-computer-code-to-implement-the-composite-trapezoidal-1045253-1761543591-0.webp) 
  
  Solution
Below is the Code for Trapezoidal rule in C Programming.
#include<stdio.h>
 #include<conio.h>
 #include<math.h>
 void main()
 {
 float x[10],y[10],sum=0,h,temp;
 int i,n,j,k=0;
 float fact(int);
 clrscr();
 printf(\"\ how many record you will be enter: \");
 scanf(\"%d\",&n);
 for(i=0; i<n; i++)
 {
 printf(\"\ \ enter the value of x%d: \",i);
 scanf(\"%f\",&x[i]);
 printf(\"\ \ enter the value of f(x%d): \",i);
 scanf(\"%f\",&y[i]);
 }
 h=x[1]-x[0];
 n=n-1;
 for(i=0;i<n;i++)
 {
 if(k==0)
 {
 sum = sum + y[i];
 k=1;
 }
 else
 sum = sum + 2 * y[i];
 }
 sum = sum + y[i];
 sum = sum * (h/2);
 printf(\"\ \  I = %f \",sum);
 getch();
 }
![Write a computer code to implement the Composite Trapezoidal Rule quadrature T_h[f] = h(1/2 f(x_0) + f(x_1) + ... + f(x_N-1) + 1/2 f(x_n)), to approximate the   Write a computer code to implement the Composite Trapezoidal Rule quadrature T_h[f] = h(1/2 f(x_0) + f(x_1) + ... + f(x_N-1) + 1/2 f(x_n)), to approximate the](/WebImages/20/write-a-computer-code-to-implement-the-composite-trapezoidal-1045253-1761543591-0.webp)
