Evaluate the surface integral double integrals F ds for the
Solution
Using Cartesian Coordinates: Solving for y yields y = (25 - x^2 - z^2), since y  0.
 ==> r(x, z) = <x, (25 - x^2 - z^2), z> with x^2 + z^2  25.
 
 r_x x r_z = <-x/(25 - x^2 - z^2), -1, -z/(25 - x^2 - z^2)>
 
 ==> n = -(r_x x r_z) = <x/(25 - x^2 - z^2), 1, z/(25 - x^2 - z^2)>
 so n points out of S.
 
 Hence, the flux s F · dS equals
  <xz, x, (25 - x^2 - z^2)> · <x/(25 - x^2 - z^2), 1, z/(25 - x^2 - z^2)> dA
 =  [x^2 z/(25 - x^2 - z^2) + x + z] dA
 
 Convert to polar coordinates (x = r cos , y = r sin ):
 (r = 0 to 5) ( = 0 to 2) [(r cos )^2 * (r sin )/(25 - r^2) + r cos  + r sin ] * r d dr
 = (r = 0 to 5) ( = 0 to 2) [r^4 cos^2() sin /(25 - r^2) + r^2 cos  + r^2 sin ] d dr
 = (r = 0 to 5) [(-1/3) r^4 cos^3()/(25 - r^2) + r^2 sin  - r^2 cos ] {for  = 0 to 2} dr
 = 0.

