Write the indicated expression as a ratio of two polynomials
Write the indicated expression as a ratio of two polynomials, assuming that
t(x) =
.
=
| 4/ |
| 3x3 + 2 |
Solution
t(x) = 4 / ( 3x^3 + 2 )
t(x-1) = 4 / ( 3(x-1)^3 + 2 ) = 4 / ( 3 ( x^3-3x^2+3x-1) + 2 )
t(x-1) = 4 / ( 3x^3 - 9x^2 + 9x -1 )
t(-1) = 4 / 3(-1)^2 + 2 = -4
plugging the values in the expression
t(x-1) - t(-1) / x = {4 / ( 3x^3 - 9x^2 + 9x -1 ) - (-4)} / x
=
{4 / ( 3x^3 - 9x^2 + 9x -1 ) + 4)} / x
= (12x^3 - 36x^2 + 36x ) / ( 3x^4 - 9x^3 + 9x^2 - x)
= (12x^2 - 36x + 36) / ( 3x^3 - 9x^2 + 9x - 1)
