Calculate 95 percent and 99 percent confidence intervals for

Calculate 95 percent and 99 percent confidence intervals for µ. (Round your answers to 3 decimal places.)

Recall that a bank manager has developed a new system to reduce the time customers spend waiting to be served by tellers during peak business hours. The mean waiting time during peak business hours under the current system is roughly 9 to 10 minutes. The bank manager hopes that the new system will have a mean waiting time that is less than six minutes. The mean of the sample of 91 bank customer waiting times is \"1formula2.mml\" = 5.42. If we let µ denote the mean of all possible bank customer waiting times using the new system and assume that equals 2.41:

Solution

a)

95% CONFIDENCE:

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    5.42          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    2.41          
n = sample size =    91          
              
Thus,              
Margin of Error E =    0.495158727          
Lower bound =    4.924841273          
Upper bound =    5.915158727          
              
Thus, the confidence interval is              
              
(   4.924841273   ,   5.915158727   ) [ANSWER]

*************************

99% CONFIDENCE:

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    5.42          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    2.41          
n = sample size =    91          
              
Thus,              
Margin of Error E =    0.650748875          
Lower bound =    4.769251125          
Upper bound =    6.070748875          
              
Thus, the confidence interval is              
              
(   4.769251125   ,   6.070748875   ) [ANSWER]

Calculate 95 percent and 99 percent confidence intervals for µ. (Round your answers to 3 decimal places.) Recall that a bank manager has developed a new system

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site