Prove the inequality for the indicated integer values of n 2
Prove the inequality for the indicated integer values of n, 2n^2 > (n + 1)^2, n greaterthanorequalto 3
Solution
2n^2 > (n+1)^2
2n^2 > n^2 +1 +2n
n^2 - 2n -1 >0
solve the inequality :
we get n < 1- sqrt2 and n > 1+sqrt2
Neglect n < 1- sqrt2 ; n < -0.4141
Now n> 1+sqrt2 ---> n > 2.414 ( sqrt2 = 1.414)
So, imediate highets integer to 2.414 is 3
So, given inequality is true for integers 3 and above
So, n >=3
Henec proved
