Suppose that X is a uniformly distributed random variable ov
Suppose that X is a uniformly distributed random variable over [-a,a] where a>0. Whenever possible, determine the value of a so that the following are satisfied:
1) P(X>1) = 1/3
2) P(X>1) = 1/2
3) P(X<1/2) = 0.7
Solution
f(x)=1/(2a) for a>0
-------------------------------------------------------------------------------------------------------
1) P(X>1) = 1/3
--> (a-1)/(2a) = 1/3
--> a-1 = (1/3)*(2a) = 2a/3
--> a-(2/3)a = 1
--> (1/3)a =1
SO a= 3
-------------------------------------------------------------------------------------------------------
2) P(X>1) = 1/2
--> (a-1)/(2a) = 1/2
--> a-1 = (1/2)*2a = a
So not soulation for a
-------------------------------------------------------------------------------------------------------
3) P(X<1/2) = 0.7
--> (1/2 -(-a))/(2a) = 0.7
--> (1/2 +a) / (2a) = 0.7
--> 1/2 +a = 0.7*(2a) = 1.4a
--> 1.4a - a= 0.5
--> 0.4a= 0.5
So a= 0.5/0.4 =1.25
![Suppose that X is a uniformly distributed random variable over [-a,a] where a>0. Whenever possible, determine the value of a so that the following are satisf Suppose that X is a uniformly distributed random variable over [-a,a] where a>0. Whenever possible, determine the value of a so that the following are satisf](/WebImages/20/suppose-that-x-is-a-uniformly-distributed-random-variable-ov-1045810-1761543941-0.webp)