Let T R2 rightarrow R3 be a function defined by Tx y x y x
Let T: R^2 rightarrow R^3 be a function defined by T(x, y) = (x = y, x + y, y) Show that T is a linear transformation.
Solution
For T is a linear transformation, we need to show if a = (a1, a2) and b = (b1,b2)
then, T(a+b) = T(a) + T(b)
and for any scalar s. we have T(sa)= sT(a).
T(a+b) = T ((a1,a2)+(b1,b2)) = T (a1 + b1, a2 + b2)
= <a1 + b1 = a2 + b2, a1 + b1 + a2 + b2, a2 + b2>
= <a1 = a2, a1 + a2 , a2> + < b1 = b2, b1 + b2,, b2>
= T(a1,a2) + T(b1,b2)
= T(a) + T(b)
Also, T(sa) = T (s(a1,a2)
= T (sa1,sa2)
= <sa1 = sa2, sa1 + sa2, sa2>
= s<a1 = a2, a1 + a2, a2>
= sT(a1,a2)
= sT(a)
Therefore, T is a linear transformation.
