Find the dot product of the vectors v 8i 2j and w I 3j F
     Find the dot product of the vectors v = 8i - 2j and w = I - 3j.  Find the magnitude and direction angle of v = -4(cos30degreei + sin30degreej).  Solve the triangleABC with A = 60degree, B = 56degree and side c = l00meters 
  
  Solution
Q1)
 A) V= 8i -2j and W = i - 3j
Dot product of V.W = (8i - 2j) . (i - 3j)
 (8.1) + (-2)(-3) = 8 + 6 = 14.
 The dot product of the vectors is 14.
B) Magnitude and direction angle of V = -4 (Cos30i + Sin30j)
Magnitude = ||V|| = Sqrt ( x2 + y2) = ((16X3/4) + (16/4)) = Sqrt (16) = 4.
 Magnitude = ||V|| = 4.
Direction angle of V = Tan (alpha) = Sin30 / Cos 30 = Tan 30, so Alpha = 300 or Pi/6
Q2) Given
 <A = 600 ; <B =560 and Side C = 100m
 <C = (180-(60 +56)) = 640.
 Angle C =640
We know that SinA/a = SinB/b = SinC/c
SinC/c = SinB/b = Sin 640 /100 = Sin560 / b
 Substituting the values , we get Side b = 92.31m
Substitutung the values in SinA/a = Sin C/c, we get the value of Side a = 96.43m

