The general manager of a large discount chain was considerin
The general manager of a large discount chain was considering location of a new store in a small mid-western city. The decision was dependent upon the per capita retail sales for the city being significantly greater than $4,500. A sample of 500 residents was taken, and showed a mean of $4,780. The population standard deviation is known as $25.
 State the null and alternative hypotheses.
Specify the rejection region for the significance value (alpha) as 0.01.
Calculate the sample (test) statistic.
Calculate the p value.
What is your conclusion?
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   4500  
 Ha:    u   >   4500   [ANSWER]
******************************
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.01   ,      
 alpha =    0.01          
 zcrit =    +   2.326347874      
Thus, we Reject Ho if z > 2.326. [ANSWER]
***********************************
               
 Getting the test statistic, as              
               
 X = sample mean =    4780          
 uo = hypothesized mean =    4500          
 n = sample size =    500          
 s = standard deviation =    25          
               
 Thus, z = (X - uo) * sqrt(n) / s =    250.4396135   [ANSWER, TEST STATISTIC]
*********************************      
               
 As this is a very large z value, the p value is              
               
 p =    0   [ANSWER]
********************************      
               
 As z > 2.326, we reject Ho.
There is significant evidence that the per capita retail sales for the city is significantly greater than $4,500. [CONCLUSION]

