Assume you plan to construct a 95 confidence interval The nu
Solution
If we are trying to get the confidence interval for the DIFFERENCE in the two proportions, then:
a)
Formulating the hypotheses
Ho: p1 - p2   =   0  
 Ha: p1 - p2   =/=   0  
Here, we see that pdo =    0   , the hypothesized population proportion difference.  
           
 Getting p1^ and p2^,          
           
 p1^ = x1/n1 =    0.351351351      
 p2 = x2/n2 =    0.571428571      
           
 Also, the standard error of the difference is          
           
 sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.12208977      
       
   
           
 For the   95%   confidence level, then  
           
 alpha/2 = (1 - confidence level)/2 =    0.025      
 z(alpha/2) =    1.959963985      
Thus,
Margin of error = z*(alpha/2)*sd = 0.239291552 [ANSWER]
******************
b)
Also,
           
 lower bound = p1^ - p2^ - z(alpha/2) * sd =    -0.459368772      
 upper bound = p1^ - p2^ + z(alpha/2) * sd =    0.019214332      
           
 Thus, the confidence interval is          
           
 (   -0.459368772   ,   0.019214332 ) [ANSWER]

