with the method that we should useSolution1 a standard error
with the method that we should use
Solution
1.
a)
standard error (se) = s / sqrt(n) = 100/sqrt(60) = 12.90994449 [answer]
************
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    477      
 x2 = upper bound =    527      
 u = mean =    502      
 n = sample size =    60      
 s = standard deviation =    100      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.936491673      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.936491673      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.026403756      
 P(z < z2) =    0.973596244      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.947192489   [answer]
*****************
c)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    492      
 x2 = upper bound =    512      
 u = mean =    502      
 n = sample size =    60      
 s = standard deviation =    100      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.774596669      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.774596669      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.219289013      
 P(z < z2) =    0.780710987      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.561421974   [answer]
********************
d)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    550      
 u = mean =    502      
 n = sample size =    60      
 s = standard deviation =    100      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    3.718064012      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   3.718064012   ) =    0.000100378 [answer]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!
![with the method that we should useSolution1. a) standard error (se) = s / sqrt(n) = 100/sqrt(60) = 12.90994449 [answer] ************ b) We first get the z score with the method that we should useSolution1. a) standard error (se) = s / sqrt(n) = 100/sqrt(60) = 12.90994449 [answer] ************ b) We first get the z score](/WebImages/21/with-the-method-that-we-should-usesolution1-a-standard-error-1046317-1761544270-0.webp)
![with the method that we should useSolution1. a) standard error (se) = s / sqrt(n) = 100/sqrt(60) = 12.90994449 [answer] ************ b) We first get the z score with the method that we should useSolution1. a) standard error (se) = s / sqrt(n) = 100/sqrt(60) = 12.90994449 [answer] ************ b) We first get the z score](/WebImages/21/with-the-method-that-we-should-usesolution1-a-standard-error-1046317-1761544270-1.webp)
