Evaluate a using the halfangle formula and b using the power
Evaluate (a) using the half-angle formula, and (b) using the power-reducing formula. Simplify your answers. tan (-17 p i/12) tan^2 9 pi/8
Solution
a) tan(-17pi/12) = -tan(17pi/12) = -tan( pi + 5pi/12)
= -tan(5pi/12)
= -tan(pi -pi/12) = tan(pi/12)
Now sin(pi12) = sqrt{( 1-cospi/6)/2} = sqrt{ 1- sqrt3/2)/2}
= sqrt(2-sqrt3)/2
We know :cosx = sqrt( cos2x +1)/2
cos(pi/12) = sqrt{ (1+cospi/6)/2 } = sqrt{ 1+sqrt3/2)/2}
tan(pi/12) = sin(pi/12)/cos(pi/12) = sqrt( 2-sqrt3)/(sqrt(2+sqrt3)
b) tan^2(9pi/8)
= sec^2(9pi/8) -1
sec(9pi/8) = 1/cos(9pi/8)
cos9pi/8 = cos(pi +pi/8) = -cospi/8
use the formula : cosx = sqrt( cos2x +1)/2
cospi/8 = sqrt{( cospi/4 +1)/2}
=sqrt{(1/sqrt2 +1)/2 }
sqrt{(1+sqrt2)/2sqrt2}
sec pi/8 = sqrt{2sqrt2/(1+sqrt2)}
tan^2(9pi/8)
= sec^2(9pi/8) -1
= 2sqrt2/(1+sqrt2) -1
= (2sqrt2 -1 -sqrt2)/(1+sqrt2)
= (sqrt2-1)/(1+sqrt2)
