For the following dimensional equations find the base dimens
For the following dimensional equations, find the base dimensions of the parameter k: MLt^-2 = kML^-1t^2 MLt^-2L^-1 = kML^-3 L^2t^-2 = k M^4T^2 ML^2t^-3 = kLT nLL^3k = T^2M^-2L MI^2k = nTM^-3L^-1 IL^2t = k^2M^4t^2 k^2T^6M^3L^-5 = T^-3t^-6L T^-1/2L^-1I^2 = k^-l/2t^4T^-5/2L^-3 MLt^-2 = MLt^-2 sin (kL^-2M^-1) T^2n = T^2n ln(knT^-1)
Solution
a) MLt^-2 = kM(L^-1)(t^-2) k= L^2
b) ML(t^-2)(L^-1) = kLt^-3 k=Mt
c) (L^2)(t^-2) = k(M^4)(T^2) k=M^-4L^2 t^-4
d) M(L^2)(t^-3) = k LT k=MLT^-3
f) M(I^2)k = nT(M^-3)(L^-1) k=n M^-4 L^-1 I^-2 T
h) (k^3)= (T^-3)(t^-6)L (T^-6)(M^-3)(L^5 )
I) (T^(-1/2))(L^-1)(I^2)(t^-4)(T^(5/2))(L^3) = (k^(-1/2))
K) (T^2)n exp^(T^2)n =(kn(T^-1))
