Let X and Y be two independent random variables with moment
Let X and Y be two independent random variables with moment generating functions:
Mx(t) = e2t^2+3t , MY(t) = e3t^2+t
Determine the moment generating function of 2X+3Y
Solution
Here we will use definition of moment generating function.
Let z=2x+3y. So Mz(t)=E(etz)=E(e(2xt+3yt))=E(e2xte3yt)=E(e2xt).E(e3yt).
Now Mx(t)=e2t^2+3t and My(t)=e3t^2+t. Putting this value we will get Mz(t)= e2(2t)^2+3(2t)*e3(3t)^2+3t=(e8t^2+6t)*(e27t^2+3t).
