Implement a MATLAB function schroderbisectionm of the form f
     Implement a MATLAB function schroderbisection.m of the form  function [r, h] = schroderbisection(a, b, f, p, t)  a: Beginning of interval [a, b]  b: End of interval [a. b]  f: function handle [f, fp, fpp] 18 f(x, p)  should return f, f\' and f\'\' at x  p: parameters to pass through to f  t: User-provided tolerance for interval width which combines the fast convergence of the Schroder iteration for multiple g(x) = x - f(x)/f\'(x)1 -1/f(x)f\'\'(x)/f(x) = x- f(x) f\'(x)/f\'(x)^2 - f(x)f\"(x) with the bracketing guarantee of bisection. At each step j = 1 to n, carefully choose in geometric mean bisection (watch out for zeroes!). Define c = min(|f(b) - f(a)|/8, |f\'\'(m)||b - a|^2) Apply the Schroder iteration function g{x) to two equations f_plusminus (x) = f(x)_plusminus e = 0, yielding six candidates g_plusminus = g_plusminus (m), a_plusminus = g_plusminus (a), b_plusminus = g_plusminus (b). Replace [a, b] by the smallest interval with endpoints chosen from a, a_+, a_-, m, q_+, q_-, b_-, b_+, b which keeps the root bracket. pea until a f value exactly vanishes, b-a lessthanorequalto tmax(|a|, |b|), or b and a are adjacent floating point numbers, whichever comes first. Return the final approximation to the root r = (a + b)/2 and a 3 times n history matrix h[1:3, 1:n] with column h[1:3, j] = (a, b, f(m)) recorded at step j. Compare results with problems 8-10.  Let lambda_k be n + 1 distinct real numbers. Let t_j be n + 1 distinct real numbers.  Show that a(t_j) = integral^n_k=0 a_ke^lambda_k^t can vanish for all real t only if a_0 = a_1 = ...= a_n = 0.  Show that for the exponential interpolation problem a(t_j) = integral^n_k=0 a_ke^lambda_k^t_j = f_j 0 lessthanorequalto j lessthanorequalto n there exists a unique solution a(t) for any data values f_j.  For equally spaced lambda_k = -k/n, find an explicit formula and an error estimate for a(t).  Interpolate Runge\'s function f(t) = 1/1 + t^2 at n + 1 equidistant points on [0, 5] by your formula from (c) and tabulate the error for n = 3, 5, 9, 17, 33.![Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv  Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv](/WebImages/21/implement-a-matlab-function-schroderbisectionm-of-the-form-f-1046702-1761544541-0.webp)
![Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv  Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv](/WebImages/21/implement-a-matlab-function-schroderbisectionm-of-the-form-f-1046702-1761544541-1.webp) 
  
  Solution
function [r,h] =schroderbisection(a,b,f,fp,fpp,t)
 h=zeros(3,100);
 j=1;
 while(abs(b-a)>t)
 x=(a:b);
 p=(a+b)/2;
 d=abs((f(b)-f(a))/8);
 m=abs(((b-a)^2)*fpp(p));
 if(d>m)
 e=m;
 else
 e=d;
 end;
q2=p-(f(p)+e)*fp(p)/((fp(p))^2-(f(p)+e)*fpp(p));
 q1=p-(f(p)-e)*fp(p)/((fp(p))^2-(f(p)-e)*fpp(p));
if(a<q1)
 a=q1;
end;
 if(q2<b)
 b=q2;
end;
 if f(p)*f(a)>0
 a=p;
 else
 b=p;
end;
h(1,j)=a+h(1,j);
h(2,j)=b+h(2,j);
h(3,j)=f(p)+h(3,j);
j=j+1;
end;
r=(b+a)/2;
end
![Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv  Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv](/WebImages/21/implement-a-matlab-function-schroderbisectionm-of-the-form-f-1046702-1761544541-0.webp)
![Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv  Implement a MATLAB function schroderbisection.m of the form function [r, h] = schroderbisection(a, b, f, p, t) a: Beginning of interval [a, b] b: End of interv](/WebImages/21/implement-a-matlab-function-schroderbisectionm-of-the-form-f-1046702-1761544541-1.webp)
