Prove by mathematical induction that 13 33 53 2n 13 n

Prove, by mathematical induction that 1^3 + 3^3 + 5^3 + ... + (2n - 1)^3 = n^2(2n^2 - 1).

Solution

Given that 13 + 33 + 53 +-----------------+ (2n-1)3 = n2 (2n2-1) -------- Eq (1)

For n=1:

      13 = 12 (2.12-1)

       1=1

For n=k

13 + 33 + 53 +-----------------+ (2k-1)3 = k2 (2k2-1)

For n=k+1

13 + 33 + 53 +-----------------+ (2k-1)3 + [2(k+1)-1]3

         = k2 (2k2-1) + [2(k+1)-1]3

           = 2k4 -k2 + [2k+2-1]3

       = 2k4 -k2 + [2k+1]3

        = 2k4 -k2 + 8k3 +1 + 12k2 + 6k [ (a+b)3 = a3 +b3 + 3a2b+ 3ab2]

      = 2k4 + 8k3 + 11k2 + 6k +1

(k+1)2 [ 2(k+1)2-1]

= (k2+2k+1) [ 2k2+ 4k+ 2-1]

= (k2+2k+1) [ 2k2+ 4k+ 1]

= 2k4+ 4k3+ k2+ 4k3+ 8k2+ 2k+ 2k2+ 4k+ 1

= 2k4+ 8k3+ 11k2 + 6k+ 1

Therefore,

13 + 33 + 53 +-----------------+ (2k-1)3 + [2(k+1)-1]3

= 2k4 + 8k3 + 11k2 + 6k +1

= (k+1)2 [ 2(k+1)2-1]

Hence,

Eq (1) is true for n = k+1

Therefore,

Eq (1) is true for all values of n.



 Prove, by mathematical induction that 1^3 + 3^3 + 5^3 + ... + (2n - 1)^3 = n^2(2n^2 - 1).SolutionGiven that 13 + 33 + 53 +-----------------+ (2n-1)3 = n2 (2n2-

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site