Prove by mathematical induction that 13 33 53 2n 13 n
Solution
Given that 13 + 33 + 53 +-----------------+ (2n-1)3 = n2 (2n2-1) -------- Eq (1)
For n=1:
13 = 12 (2.12-1)
1=1
For n=k
13 + 33 + 53 +-----------------+ (2k-1)3 = k2 (2k2-1)
For n=k+1
13 + 33 + 53 +-----------------+ (2k-1)3 + [2(k+1)-1]3
= k2 (2k2-1) + [2(k+1)-1]3
= 2k4 -k2 + [2k+2-1]3
= 2k4 -k2 + [2k+1]3
= 2k4 -k2 + 8k3 +1 + 12k2 + 6k [ (a+b)3 = a3 +b3 + 3a2b+ 3ab2]
= 2k4 + 8k3 + 11k2 + 6k +1
(k+1)2 [ 2(k+1)2-1]
= (k2+2k+1) [ 2k2+ 4k+ 2-1]
= (k2+2k+1) [ 2k2+ 4k+ 1]
= 2k4+ 4k3+ k2+ 4k3+ 8k2+ 2k+ 2k2+ 4k+ 1
= 2k4+ 8k3+ 11k2 + 6k+ 1
Therefore,
13 + 33 + 53 +-----------------+ (2k-1)3 + [2(k+1)-1]3
= 2k4 + 8k3 + 11k2 + 6k +1
= (k+1)2 [ 2(k+1)2-1]
Hence,
Eq (1) is true for n = k+1
Therefore,
Eq (1) is true for all values of n.
