Assume that hx fx3 where f is a differentiable function if
Solution
(1) h(x)= (f(x))3
so h\'(x)= 3 (f(x))2 f\'(x) by chain rule
so h\'(0) = 3 x 1/4 x 8/3= 2
h(0) = -1/8
The slope of the tangent =h\'(0) =2 and it passes through (0,-1/8).
So the required equation is
(y+1/8) = 2(x-0)
or 8y+1=2x
(2) x2 +xy+y3 =1........................(1)
y=h(x) defined implicitly by (1)
Putting x=1, y+y3 =0 implying y =0 (as the other roots are not real)
So h(1)=0
Differentiate (1) wrt to x to get
2x+ xy\'+y+ 3y2 y\'=0......................(2)
Put x=1 and y=0 ,to get
h\'(0) = -2
Differentiating (2),
2+ y\' +xy\'\'+y\'+6y(y\')2 +3y2 y\'\'=0........................(3)
Putting x=1,y=0, y\'=-2, yields
y\'\'(0)= h\'\'(1)=-2
Differentiating (3), we get
2y\'\'+xy\'\'\'+y\'\'+6(y\')3 +12yy\'y\'\'+6yy\'y\'\' +3y2 y\'\'\'=0
Substituting x=1, y=0, y\'=-2 and y\'\'=-2
-4+y\'\'\'-2-48=0
so y\'\'\'(1)=h\'\'\'(1) = 54
