to estimate the mean of a moundshaped population a sample of
to estimate the mean of a mound-shaped population, a sample of 15 observations had mean 123.47 and a standard deviation 8.65. Calculate a 90% confidence interval estimate of the population mean. (show Work)
Solution
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    123.47          
 t(alpha/2) = critical t for the confidence interval =    1.761310136          
 s = sample standard deviation =    8.65          
 n = sample size =    15          
 df = n - 1 =    14          
 Thus,              
 Margin of Error E =    3.933745981          
 Lower bound =    119.536254          
 Upper bound =    127.403746          
               
 Thus, the confidence interval is              
               
 (   119.536254   ,   127.403746   ) [ANSWER]

