1yyy2Solution1yyy2 1yd2ydx2dydx2 let dydxv d2ydx2dvdx d2ydx2

(1+y)y\'\'=(y\')^2

Solution

(1+y)y\'\'=(y\')^2

(1+y)d2y/dx2=(dy/dx)2

let dy/dx=v

d2y/dx2=dv/dx

d2y/dx2=dv/dy *dy/dx

d2y/dx2=dv/dy *v

(1+y)y\'\'=(y\')2

(1+y)dv/dy *v=(v)2

(1+y)dv/dy =v

dv/v =dy/(1+y)

integrate on both sides

dv/v =dy/(1+y)

ln(v)=ln(1+y) +c

v=eln(1+y) +c

v=eln(1+y)ec

v=C(1+y)

dy/dx=C(1+y)

dy/(1+y) =Cdx

integrate on both sides

dy/(1+y) =Cdx

ln(1+y)=Cx +D

(1+y)=eCx +D

(1+y)=DeCx

y =DeCx -1 where C,D are constants

(1+y)y\'\'=(y\')^2Solution(1+y)y\'\'=(y\')^2 (1+y)d2y/dx2=(dy/dx)2 let dy/dx=v d2y/dx2=dv/dx d2y/dx2=dv/dy *dy/dx d2y/dx2=dv/dy *v (1+y)y\'\'=(y\')2 (1+y)dv/dy

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site