Use the following data to find the velocity and acceleration
Solution
a) Centered finite-difference
Velocity v=dx/dt=x\'(ti)= [x(ti+1)-x(ti-1)]/2h
= (7.3-5.1)/2x2
= 2.2/4=0.55m/s
Acceleration a=d2x/dt2=x\"(ti)=[x(ti+1)-2x(ti)+x(ti-1)]/h2
=[7.3-2(6.3)+5.1]/22
= -0.05m/s2
b) Forward finite-difference
Velocity v=dx/dt=x\'(ti)= [x(ti+1)-x(ti)]/h
= (7.3-6.3)/2=0.5m/s
Acceleration a=d2x/dt2=x\"(ti)= [x(ti+2)-2x(ti+1)+x(ti)]/h2
= [8-2(7.3)+6.3]/4
= -0.075m/s2
c) Backward finite-difference
Velocity v=dx/dt=x\'(ti)= [x(ti)-x(ti-1)]/h
= (6.3-5.1)/2=0.6m/s
Acceleration a=d2x/dt2=x\"(ti)= [x(ti)-2x(ti-1)+x(ti-2)]/h2
= [6.3-2(5.1)+3.4]/4
= -0.275m/s2
| time | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
| distance | 0 | 0.7 | 1.8 | 3.4 | 5.1 | 6.3 | 7.3 | 8.0 | 8.4 |
| xi-2 | xi-1 | xi | xi+1 | xi+2 |
