Related to linear map 6 In reference to the previous exercis
Related to linear map
6. In reference to the previous exercise, we say that if V and W are vector spaces, then a function T V W is called additive if T(u v) T(n) T(v) for all u, v E VSolution
Given that T(u+v) = T(u)+T(v) for all u,v in V.
Case I:
Let n be a natural number.
Hence T(nu) = T(u+u+u+...n times)
= T(u)+T(u)+...+T(u) n times
= n T(u) for n being a natural number
Case II: Let n =0
T(0.u) = T(0) =0
Case III: Let n be a negative integer
Then n = -m
where m is natural number
T(nu) = T(-mu) = T(0-mu)
= T(0) -mT(u)
= -mT(u)
= nT(u)
Hence true for all integers.
