Given dydt 4 y 40 sin3t Initial Condition y0 6 Find yt us
Given: dy/dt + 4 y = 40 sin)3t), Initial Condition: y(0) = 6 Find y(t) using The Laplace Transform Method (no other method is allowed)
Solution
y\' + 4y = 40sin(3t)
Taking Laplace Transform on both the sides and let L[y] = Y
=> L[y\'] + 4L[y] = L[40sin(3t)]
=> sY - y(0) + 4Y = 120/(s2 + 9)
Plugging the value of y(0) = 6
=> Y(s + 4) - 6 = 120/(s2 + 9)
=> Y(s + 4) = (174 + 6s2)/(s2 + 9)
=> Y = (174 + 6s2)/( (s2 + 9)(s + 4) )
=> Y = -24s/( 5(s2 + 9) ) + 96/( 5(s2 + 9) ) + 54/( 5(s + 4) )
Taking Inverse Laplace Transform
=> y(t) = (54/5)e-4t - (24/5)cos(3t) +(32/5)sin(3t)
