Use Z scores Consider the following observations on tire lif
Use Z scores
Consider the following observations on tire life (in miles): 42527 41769 42644 42420 42728 41903 42043 41987 41894 42931 41941 42147 42174 43105 42445 43349 41828 41903 43062 43012 42187 42197 42726 43238 41827 41589 41984 42120 41985 41973 42343 44267 42194 42230 42341 42167 41971 42222 42345 43049 42896 43103 42741 43342 42987 43197 42826 42728 If we assume that the observations follow a normal distribution, what is the probability that a particular tire survives over 43,000 miles of use?Solution
Getting the mean, X,
X = Sum(x) / n
Summing the items, Sum(x) = 2038587
As n = 48
Thus,
X = 42470.5625
Setting up tables,
x x - X (x - X)^2
42527 56.4375 3185.191406
41769 -701.5625 492189.9414
42644 173.4375 30080.56641
42420 -50.5625 2556.566406
42728 257.4375 66274.06641
41903 -567.5625 322127.1914
42043 -427.5625 182809.6914
41987 -483.5625 233832.6914
41894 -576.5625 332424.3164
42931 460.4375 212002.6914
41941 -529.5625 280436.4414
42147 -323.5625 104692.6914
42174 -296.5625 87949.31641
43105 634.4375 402510.9414
42445 -25.5625 653.4414063
43349 878.4375 771652.4414
41828 -642.5625 412886.5664
41903 -567.5625 322127.1914
43062 591.4375 349798.3164
43012 541.4375 293154.5664
42187 -283.5625 80407.69141
42197 -273.5625 74836.44141
42726 255.4375 65248.31641
43238 767.4375 588960.3164
41827 -643.5625 414172.6914
41589 -881.5625 777152.4414
41984 -486.5625 236743.0664
42120 -350.5625 122894.0664
41985 -485.5625 235770.9414
41973 -497.5625 247568.4414
42343 -127.5625 16272.19141
44267 1796.4375 3227187.691
42194 -276.5625 76486.81641
42230 -240.5625 57870.31641
42341 -129.5625 16786.44141
42167 -303.5625 92150.19141
41971 -499.5625 249562.6914
42222 -248.5625 61783.31641
42345 -125.5625 15765.94141
43049 578.4375 334589.9414
42896 425.4375 180997.0664
43103 632.4375 399977.1914
42741 270.4375 73136.44141
43342 871.4375 759403.3164
42987 516.4375 266707.6914
43197 726.4375 527711.4414
42826 355.4375 126335.8164
42728 257.4375 66274.06641
Thus, Sum(x - X)^2 = 14296097.81
Thus, as
s^2 = Sum(x - X)^2 / (n - 1)
As n = 48
s^2 = 304172.2939
Thus,
s = 551.5181719
************************
We first get the z score for the critical value. As z = (x - u) / s, then as
x = critical value = 43000
u = mean = 42470.5625
s = standard deviation = 551.5181719
Thus,
z = (x - u) / s = 0.959963836
Thus, using a table/technology, the right tailed area of this is
P(z > 0.959963836 ) = 0.168536708 [ANSWER]

