Use Z scores Consider the following observations on tire lif

Use Z scores

Consider the following observations on tire life (in miles): 42527 41769 42644 42420 42728 41903 42043 41987 41894 42931 41941 42147 42174 43105 42445 43349 41828 41903 43062 43012 42187 42197 42726 43238 41827 41589 41984 42120 41985 41973 42343 44267 42194 42230 42341 42167 41971 42222 42345 43049 42896 43103 42741 43342 42987 43197 42826 42728 If we assume that the observations follow a normal distribution, what is the probability that a particular tire survives over 43,000 miles of use?

Solution

Getting the mean, X,          
          
X = Sum(x) / n          
Summing the items, Sum(x) =    2038587      
As n =    48      
Thus,          
X =    42470.5625      
          
Setting up tables,          
x   x - X   (x - X)^2  
42527   56.4375   3185.191406  
41769   -701.5625   492189.9414  
42644   173.4375   30080.56641  
42420   -50.5625   2556.566406  
42728   257.4375   66274.06641  
41903   -567.5625   322127.1914  
42043   -427.5625   182809.6914  
41987   -483.5625   233832.6914  
41894   -576.5625   332424.3164  
42931   460.4375   212002.6914  
41941   -529.5625   280436.4414  
42147   -323.5625   104692.6914  
42174   -296.5625   87949.31641  
43105   634.4375   402510.9414  
42445   -25.5625   653.4414063  
43349   878.4375   771652.4414  
41828   -642.5625   412886.5664  
41903   -567.5625   322127.1914  
43062   591.4375   349798.3164  
43012   541.4375   293154.5664  
42187   -283.5625   80407.69141  
42197   -273.5625   74836.44141  
42726   255.4375   65248.31641  
43238   767.4375   588960.3164  
41827   -643.5625   414172.6914  
41589   -881.5625   777152.4414  
41984   -486.5625   236743.0664  
42120   -350.5625   122894.0664  
41985   -485.5625   235770.9414  
41973   -497.5625   247568.4414  
42343   -127.5625   16272.19141  
44267   1796.4375   3227187.691  
42194   -276.5625   76486.81641  
42230   -240.5625   57870.31641  
42341   -129.5625   16786.44141  
42167   -303.5625   92150.19141  
41971   -499.5625   249562.6914  
42222   -248.5625   61783.31641  
42345   -125.5625   15765.94141  
43049   578.4375   334589.9414  
42896   425.4375   180997.0664  
43103   632.4375   399977.1914  
42741   270.4375   73136.44141  
43342   871.4375   759403.3164  
42987   516.4375   266707.6914  
43197   726.4375   527711.4414  
42826   355.4375   126335.8164  
42728   257.4375   66274.06641  
          
          
Thus, Sum(x - X)^2 =    14296097.81      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    48      
          
s^2 =    304172.2939      
          
Thus,          
          
s =    551.5181719      

************************

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    43000      
u = mean =    42470.5625      
          
s = standard deviation =    551.5181719      
          
Thus,          
          
z = (x - u) / s =    0.959963836      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0.959963836   ) =    0.168536708 [ANSWER]

Use Z scores Consider the following observations on tire life (in miles): 42527 41769 42644 42420 42728 41903 42043 41987 41894 42931 41941 42147 42174 43105 42
Use Z scores Consider the following observations on tire life (in miles): 42527 41769 42644 42420 42728 41903 42043 41987 41894 42931 41941 42147 42174 43105 42

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site