Prove or disprove thereexists x elementof R forall y e R y2
Prove or disprove: thereexists x elementof R, forall y e R, y^2 > 2013 + x Prove or disprove: thereexists x elementof R, forall y elementof R, y^3 > 2016 + x Prove or disprove: forall elementof > 0, thereexists N elementof N elementof Z^>0, n greaterthanorequalto doublesidearrow 1000/n
Solution
a)
True
We know y^2>=0 for all y in R
SO, choose, x=-2017
So, 2016+x=-1
b)
False.
f(x)=x^3 has range from -infinity and infintiy ie unbounded from above and below
So no such x exists
(c)
e>0
So, there exist N so that
1000/e<N
Hence for all n>=N
1000/e<n
Hence, 1000<ne
1000/n<e for all n>=N
Hence proved
