Let X be a random variable following the standard normal dis
Let X be a random variable following the standard normal distribution. Let Z = X^2 + 2X. Find the PDF of Y, its mean and its variance
Solution
Let\'s write P(X)=N(X) ...#1
(Where N(X) is the normal distribution function over X)
Z=z => X(X+2) = z => (X+1)2-1 = z => X=-1-(z+1)0.5 OR X=-1+(z+1)0.5
Let\'s assume Xmin=-1-(z+1)0.5
Xmax=-1+(z+1)0.5
We can use a simple tranformation formula
PDF(Z) = PDF(X at where Z=z) * (|dx/dz|)
|dz/dx|=2(x+2)
=>|dx/dz|=0.5(x+2)-1
Now PDF(Z) = PDF(X at X=Xmin)*(0.5(Xmin+2)-1) + PDF(X at X=Xmax)*(0.5(Xmax+2)-1)
= N(Xmin)*(0.5(Xmin+2)-1) + N(Xmax)*(0.5(Xmax+2)-1)
=0.5*[ N(Xmin) * (Xmin+2)-1 + N(Xmax) * (Xmax+2)-1 ] ......ANSWER
Where N(X)=Normal Distribution Function Over X
Xmin=-1-(z+1)0.5
Xmax=-1+(z+1)0.5
