Find the first partial derivatives fx and fy of the followin
Solution
Given that
f( x , y ) = yln( 13x + 13y )
fx :
fx = / x ( yln( 13x + 13y ) )
fx = y . / x( ln( 13x + 13y ) )
Apply chain rule , df(u)/dx = df/du.du/dx
Let u = 13x + 13y
/ x( ln( 13x + 13y ) ) = / u( ln(u) ). / x( 13x + 13y )
= 1/u . [ / x(13x) + / x(13y) ] [ since, d/dx( ln x ) = 1/x ]
= 1/u .[ 13 + 0 ]
= 13.( 1/u )
Substitute back u = 13x + 13y
/ x( ln( 13x + 13y ) ) = 13 / ( 13x + 13y )
= 13 / 13( x + y)
= 1 / ( x + y )
Hence,
fx = y . / x( ln( 13x + 13y ) )
= y.1 / ( x + y )
fx = y / ( x + y )
Therefore,
fx = y / ( x + y )
fy :
fy = / y ( yln( 13x + 13y ) )
Apply the product rule , ( u.v)\' = u\'v + uv\'
u = y , v = ln( 13x + 13y )
fy = / y ( yln( 13x + 13y ) )
= / y (y).ln( 13x + 13y ) + y. / y( ln( 13x + 13y ) )
= 1. ln( 13x + 13y ) + y [ 1/( 13x +13y ). / y( 13x +13y ) ] [ since,d/dx( ln x ) = 1/x ]
= ln( 13x + 13y ) + y [ 1/( 13x + 13y ).(0 + 13) ]
= ln( 13x + 13y ) +y [ 13 / 13( x + y ) ]
fy = ln( 13x +13y ) + ( y / ( x + y ) )
Therefore,
fy = ln( 13x +13y ) + ( y / ( x + y ) )


