Assignment IIf you can do this for me I will give it a thumb

Assignment

IIf you can do this for me I will give it a thumbs up

1. Data is below

Choose three explanatory variables to model the traffic fatality rate; analyze your variables

Set up formal hypothesis tests for each explanatory variable and state your reasoning for choosing a significance level for hypothesis testing

Estimate the model and present your results

Perform t-test analysis on each variable and discuss results of your hypothesis testing, including statistical significance. In Stata, use \"test\" command follows by the exogenous variable you want to test. See Appendix B on page 584-585 for the critical values. (You can do something fancier with this command e.g. test x1+x2=1, if you have a null hypothesis that the coefficient of two variables should sum up to 1 for example a constant return to scale of a Cobb-Douglas production function. This is not a part of this exercise)

Discuss the results in terms of your original expectations

Here is the data

state year mrall beertax mlda vmiles unrate perinc
1 1982 2.13 1.54 19 7.23 14.4 10544
1 1983 2.35 1.79 19 7.84 13.7 10733
1 1984 2.34 1.71 19 8.26 11.1 11109
1 1985 2.19 1.65 20 8.73 8.9 11333
1 1986 2.67 1.61 21 8.95 9.8 11662
1 1987 2.72 1.56 21 9.17 7.8 11944
1 1988 2.49 1.5 21 9.67 7.2 12369
4 1982 2.5 0.21 19 6.81 9.9 12309
4 1983 2.27 0.21 19 6.59 9.1 12694
4 1984 2.83 0.3 19 6.71 5 13266
4 1985 2.8 0.38 21 6.77 6.5 13727
4 1986 3.07 0.37 21 8.13 6.9 14107
4 1987 2.77 0.36 21 9.37 6.2 14241
4 1988 2.71 0.35 21 9.82 6.3 14408
5 1982 2.38 0.65 21 7.21 9.8 10267
5 1983 2.4 0.68 21 7.18 10.1 10433
5 1984 2.24 0.6 21 7.08 8.9 10916
5 1985 2.26 0.58 21 7.25 8.7 11149
5 1986 2.54 0.56 21 7.47 8.7 11399
5 1987 2.68 0.55 21 7.67 8.1 11537
5 1988 2.55 0.52 21 8.02 7.7 11760
6 1982 1.86 0.11 21 6.86 9.9 15797
6 1983 1.81 0.1 21 7.22 9.7 15970
6 1984 1.95 0.1 21 7.62 7.8 16590
6 1985 1.88 0.1 21 7.87 7.2 16985
6 1986 1.95 0.09 21 8.03 6.7 17356
6 1987 1.99 0.09 21 8.18 5.8 17846
6 1988 1.9 0.09 21 8.53 5.3 18049
8 1982 2.17 0.21 21 7.74 7.7 15082
8 1983 2.05 0.21 21 7.66 6.6 15132
8 1984 1.91 0.2 21 7.71 5.6 15487
8 1985 1.79 0.19 21 8.09 5.9 15570
8 1986 1.85 0.19 21 8.13 7.4 15616
8 1987 1.79 0.18 21 8.18 7.7 15605
8 1988 1.51 0.17 21 8.38 6.4 15845
9 1982 1.65 0.22 19 6.44 6.9 17255
9 1983 1.39 0.23 19 6.57 6 17744
9 1984 1.49 0.25 20 6.68 4.6 18760
9 1985 1.41 0.24 20 6.98 4.9 19313
9 1986 1.41 0.23 21 7.66 3.8 20153
9 1987 1.4 0.23 21 8.34 3.3 21192
9 1988 1.5 0.22 21 8.06 3 22193
10 1982 2.03 0.17 20 7.65 8.5 14264
10 1983 1.82 0.17 20 8.06 8.1 14500
10 1984 2.12 0.16 21 8.37 6.2 14925
10 1985 1.67 0.15 21 8.63 5.3 15409
10 1986 2.15 0.15 21 9.05 4.3 15822
10 1987 2.27 0.14 21 9.45 3.2 16407
10 1988 2.42 0.14 21 9.7 3.2 16998
12 1982 2.53 1.07 19 7.59 8.2 13502
12 1983 2.5 1.17 19 7.6 8.6 13924
12 1984 2.55 1.19 19 7.74 6.3 14308
12 1985 2.49 1.14 20 7.75 6 14761
12 1986 2.42 1.11 21 7.77 5.7 15102
12 1987 2.36 1.08 21 7.79 5.3 15584
12 1988 2.5 1.04 21 8.54 5 15980
13 1982 2.17 2.72 19 8.62 7.8 11774
13 1983 2.26 2.61 19 8.52 7.5 12237
13 1984 2.41 2.51 19 8.64 6 12957
13 1985 2.28 2.42 19 8.99 6.5 13364
13 1986 2.51 2.35 20 9.34 5.9 13892
13 1987 2.57 2.28 21 9.69 5.5 14306
13 1988 2.61 2.19 21 9.82 5.8 14687
16 1982 2.62 0.4 19 8.03 9.8 11079
16 1983 2.66 0.39 19 8.39 9.8 11346
16 1984 2.42 0.37 19 7.78 7.2 11387
16 1985 2.54 0.36 19 7.67 7.9 11460
16 1986 2.57 0.35 19 7.9 8.7 11542
16 1987 2.63 0.34 21 8.14 8 11859
16 1988 2.56 0.32 21 8.1 5.8 12190
17 1982 1.44 0.19 21 5.7 11.3 14743
17 1983 1.33 0.18 21 5.86 11.4 14745
17 1984 1.34 0.17 21 6.07 9.1 15390
17 1985 1.33 0.17 21 6.14 9 15603
17 1986 1.38 0.16 21 6.35 8.1 15989
17 1987 1.43 0.16 21 6.54 7.4 16417
17 1988 1.58 0.15 21 6.76 6.8 16915
18 1982 1.75 0.31 21 7.15 11.9 12283
18 1983 1.86 0.3 21 7.28 11.1 12365
18 1984 1.68 0.28 21 7.48 8.6 13009
18 1985 1.77 0.27 21 7.42 7.9 13161
18 1986 1.89 0.27 21 7.71 6.7 13582
18 1987 1.91 0.26 21 7.98 6.4 13937
18 1988 1.98 0.25 21 9.2 5.3 14364
19 1982 1.65 0.38 19 6.65 8.5 12969
19 1983 1.77 0.36 19 6.77 8.1 12573
19 1984 1.45 0.35 19 7.06 7 13203
19 1985 1.64 0.33 19 7 8 13352
19 1986 1.55 0.38 20 7.19 7 13812
19 1987 1.73 0.43 21 7.34 5.5 14284
19 1988 1.97 0.48 21 7.73 4.5 14112
20 1982 2.07 0.48 21 7.33 6.3 14094
20 1983 1.69 0.47 21 7.48 6.1 13917
20 1984 2.09 0.45 21 7.67 5.2 14309
20 1985 1.98 0.43 21 7.87 5 14631
20 1986 2.03 0.42 21 8.1 5.4 14977
20 1987 1.98 0.41 21 8.3 4.9 15152
20 1988 1.94 0.39 21 8.48 4.8 15167
21 1982 2.23 0.22 21 6.94 10.6 11072
21 1983 2.09 0.21 21 7.19 11.7 10914
21 1984 2.03 0.2 21 7.51 9.3 11442
21 1985 1.91 0.19 21 7.65 9.5 11406
21 1986 2.16 0.19 21 7.86 9.3 11603
21 1987 2.26 0.18 21 8.14 8.8 12008
21 1988 2.25 0.17 21 8.48 7.9 12341
22 1982 2.49 0.87 18 6.14 10.3 12214
22 1983 2.1 0.83 18 6.21 11.8 11994
22 1984 2.15 0.8 18 7.08 10 12018
22 1985 2.08 0.77 18 7.45 11.5 11972
22 1986 2.07 0.75 18 7.11 13.1 11603
22 1987 1.85 0.73 21 6.86 12 11515
22 1988 2.1 0.7 21 7.87 10.9 11831
23 1982 1.46 0.81 20 6.73 8.6 11443
23 1983 1.96 0.77 20 6.92 9 11796
23 1984 2.01 0.74 20 8.08 6.1 12271
23 1985 1.77 0.72 21 7.97 5.4 12609
23 1986 1.83 0.75 21 8.55 5.3 13292
23 1987 1.95 0.79 21 9.07 4.4 13984
23 1988 2.12 0.76 21 9.46 3.8 14539
24 1982 1.5 0.24 21 6.77 8.4 15198
24 1983 1.53 0.23 21 7.12 6.9 15644
24 1984 1.48 0.22 21 7.29 5.4 16313
24 1985 1.66 0.21 21 7.59 4.6 16922
24 1986 1.76 0.21 21 7.83 4.5 17476
24 1987 1.79 0.2 21 8.05 4.2 18167
24 1988 1.69 0.19 21 8.11 4.5 18756
25 1982 1.15 0.29 20 6.38 7.9 15216
25 1983 1.13 0.28 20 6.51 6.9 15802
25 1984 1.15 0.26 20 6.65 4.8 16735
25 1985 1.27 0.25 21 6.82 3.9 17271
25 1986 1.29 0.25 21 7.03 3.8 18146
25 1987 1.18 0.24 21 7.23 3.2 19050
25 1988 1.23 0.23 21 7.36 3.3 20035
26 1982 1.53 0.55 21 6.71 15.5 13247
26 1983 1.45 0.52 21 6.72 14.2 13607
26 1984 1.69 0.5 21 7.01 11.2 14318
26 1985 1.7 0.48 21 7.42 9.9 14831
26 1986 1.76 0.47 21 7.83 8.8 15279
26 1987 1.74 0.46 21 8.23 8.2 15418
26 1988 1.84 0.44 21 8.43 7.6 15931
27 1982 1.38 0.35 19 7.06 7.8 13782
27 1983 1.34 0.33 19 7.49 8.2 13841
27 1984 1.4 0.32 19 7.64 6.3 14734
27 1985 1.45 0.31 19 7.8 6 14983
27 1986 1.36 0.3 20 8.05 5.3 15464
27 1987 1.25 0.32 21 8.28 5.4 15910
27 1988 1.42 0.32 21 8.46 4 16048
28 1982 2.84 1.15 21 6.68 11 9554
28 1983 2.77 1.1 21 6.89 12.6 9514
28 1984 2.61 1.06 21 7.1 10.8 9792
28 1985 2.53 1.08 21 7.32 10.3 9798
28 1986 2.94 1.07 21 7.49 11.7 9997
28 1987 2.88 0.96 21 7.68 10.2 10303
28 1988 2.76 0.92 21 8.41 8.4 10699
29 1982 1.8 0.35 21 7.08 9.2 12969
29 1983 1.84 0.33 21 7.36 9.9 13187
29 1984 1.93 0.32 21 7.71 7.2 13727
29 1985 1.85 0.31 21 7.81 6.4 14034
29 1986 2.23 0.3 21 8.16 6.1 14368
29 1987 2.05 0.29 21 8.5 6.3 14648
29 1988 2.15 0.28 21 8.86 5.7 14872
30 1982 3.16 0.35 19 8.28 8.6 12033
30 1983 3.5 0.33 19 8.8 8.8 11954
30 1984 2.89 0.32 19 8.97 7.4 11907
30 1985 2.7 0.32 19 9.17 7.7 11669
30 1986 2.72 0.32 19 9.58 8.1 12076
30 1987 2.89 0.32 20 9.98 7.4 12291
30 1988 2.46 0.32 21 10.11 6.8 12383
31 1982 1.64 0.38 20 7.19 6.1 13192
31 1983 1.6 0.36 20 7.23 5.7 12920
31 1984 1.78 0.35 20 26.15 4.4 13541
31 1985 1.48 0.37 21 7.51 5.5 13735
31 1986 1.81 0.46 21 7.87 5 13971
31 1987 1.86 0.47 21 8.21 4.9 14300
31 1988 1.63 0.5 21 8.37 3.6 14219
32 1982 3.19 0.16 21 7.3 10.1 14914
32 1983 2.82 0.2 21 7.66 9.8 14864
32 1984 2.72 0.22 21 8 7.8 15214
32 1985 2.77 0.21 21 8.08 8 15565
32 1986 2.41 0.21 21 8.25 6 15976
32 1987 2.6 0.2 21 8.34 6.3 16412
32 1988 2.71 0.19 21 8.53 5.2 16854
33 1982 1.82 0.48 20 7.35 7.4 13834
33 1983 1.99 0.57 20 7.49 5.4 14663
33 1984 1.96 0.74 20 7.46 4.3 15452
33 1985 1.91 0.72 20 7.55 3.9 16281
33 1986 1.67 0.7 21 8.13 2.8 17132
33 1987 1.69 0.68 21 8.67 2.5 17906
33 1988 1.53 0.65 21 8.76 2.4 18705
34 1982 1.43 0.09 19 6.97 9 16666
34 1983 1.25 0.09 21 6.99 7.8 17275
34 1984 1.23 0.08 21 6.96 6.2 18066
34 1985 1.27 0.08 21 7.02 5.7 18662
34 1986 1.36 0.08 21 7.22 5 19421
34 1987 1.33 0.08 21 7.44 4 20313
34 1988 1.36 0.07 21 7.6 3.8 21168
35 1982 4.22 0.24 21 8.66 9.2 11347
35 1983 3.79 0.35 21 8.33 10.1 11289
35 1984 3.49 0.45 21 8.72 7.5 11540
35 1985 3.69 0.43 21 9.15 8.8 11861
35 1986 3.37 0.42 21 9.6 9.2 11826
35 1987 3.79 0.41 21 10.08 8.9 11898
35 1988 3.23 0.39 21 10.14 7.8 12019
36 1982 1.23 0.12 19 4.58 8.6 15159
36 1983 1.17 0.13 19 4.74 8.6 15573
36 1984 1.16 0.14 19 4.92 7.2 16335
36 1985 1.13 0.13 19 5.09 6.5 16709
36 1986 1.19 0.13 21 5.3 6.3 17326
36 1987 1.31 0.12 21 5.5 4.9 18005
36 1988 1.26 0.12 21 5.79 4.2 18580
37 1982 2.17 1.43 21 7.16 9 11079
37 1983 2.03 1.38 21 7.41 8.9 11455
37 1984 2.35 1.32 21 7.81 6.7 12089
37 1985 2.37 1.27 21 7.98 5.4 12354
37 1986 2.6 1.24 21 8.25 5.3 12839
37 1987 2.47 1.2 21 8.51 4.5 13325
37 1988 2.42 1.15 21 8.93 3.6 13767
38 1982 2.2 0.43 21 7.82 5.9 12554
38 1983 1.7 0.41 21 7.88 5.6 12390
38 1984 1.46 0.4 21 7.83 5.1 12690
38 1985 1.31 0.38 21 7.86 5.9 12661
38 1986 1.47 0.37 21 8.15 6.3 12817
38 1987 1.5 0.36 21 8.45 5.2 12971
38 1988 1.56 0.35 21 8.64 4.8 12351
39 1982 1.49 0.43 21 6.66 12.5 13039
39 1983 1.47 0.41 21 6.82 12.2 13236
39 1984 1.53 0.4 21 6.97 9.4 13785
39 1985 1.53 0.38 21 7.03 8.9 13993
39 1986 1.56 0.37 21 7.2 8.1 14280
39 1987 1.64 0.36 21 7.34 7 14598
39 1988 1.62 0.35 21 7.55 6 14953
40 1982 3.26 0.87 21 9.29 5.7 13553
40 1983 2.56 0.83 21 8.93 9 12784
40 1984 2.41 0.95 21 9.36 7 12881
40 1985 2.25 0.96 21 9.45 7.1 12905
40 1986 2.11 0.94 21 9.5 8.2 12656
40 1987 1.82 0.91 21 9.66 7.4 12607
40 1988 1.96 0.87 21 9.99 6.7 12823
41 1982 1.94 0.23 21 7.26 11.5 12626
41 1983 2.07 0.22 21 7.73 10.8 12925
41 1984 2.14 0.21 21 7.83 9.4 13246
41 1985 2.08 0.2 21 7.99 8.8 13376
41 1986 2.29 0.19 21 8.29 8.5 13649
41 1987 2.28 0.19 21 8.57 6.2 14019
41 1988 2.45 0.18 21 9.11 5.8 14326
42 1982 1.53 0.29 21 6 10.9 13652
42 1983 1.45 0.28 21 6.08 11.8 13706
42 1984 1.45 0.26 21 6.25 9.1 13988
42 1985 1.49 0.25 21 6.36 8 14357
42 1986 1.59 0.25 21 6.48 6.8 14713
42 1987 1.66 0.24 21 6.59 5.7 15200
42 1988 1.61 0.23 21 6.77 5.1 15624
44 1982 1.1 0.17 20 6.19 10.2 13327
44 1983 1.05 0.17 20 6.29 8.3 13759
44 1984 0.82 0.16 21 5.51 5.3 14312
44 1985 1.13 0.15 21 6.02 4.9 14595
44 1986 1.27 0.15 21 6.06 4 15109
44 1987 1.15 0.15 21 6.09 3.8 15633
44 1988 1.26 0.14 21 5.89 3.1 16258
45 1982 2.26 2.06 21 7.51 10.8 10394
45 1983 2.59 1.98 21 7.67 10 10694
45 1984 2.77 1.9 21 7.87 7.1 11160
45 1985 2.84 1.83 21 7.97 6.8 11370
45 1986 3.13 1.78 21 8.41 6.2 11675
45 1987 3.17 1.73 21 8.82 5.6 12027
45 1988 2.98 1.66 21 9.15 4.5 12441
46 1982 2.13 0.72 21 9.17 5.5 11323
46 1983 2.5 0.69 21 9.04 5.4 11092
46 1984 2.03 0.66 21 9.08 4.3 11662
46 1985 1.84 0.64 21 8.87 5.1 11684
46 1986 1.89 0.62 21 8.82 4.7 12175
46 1987 1.89 0.61 21 8.76 4.2 12545
46 1988 2.06 0.59 21 9.3 3.9 12276
47 1982 2.26 0.34 19 7.46 11.8 10988
47 1983 2.21 0.32 19 7.73 11.5 11183
47 1984 2.32 0.31 20 7.73 8.6 11704
47 1985 2.31 0.3 21 7.61 8 11919
47 1986 2.56 0.29 21 8.17 8 12372
47 1987 2.57 0.28 21 8.68 6.6 12876
47 1988 2.59 0.27 21 9.03 5.8 13352
48 1982 2.74 0.43 19 8.14 6.9 13943
48 1983 2.42 0.42 19 8.34 8 13693
48 1984 2.43 0.42 19 8.56 5.9 14040
48 1985 2.25 0.46 19 8.75 7 14270
48 1986 2.14 0.45 20 8.82 8.9 13950
48 1987 1.94 0.44 21 9.01 8.4 13889
48 1988 2.01 0.42 21 9.29 7.3 14038
49 1982 1.89 0.36 21 7.01 7.8 10789
49 1983 1.77 0.63 21 7.04 9.2 10780
49 1984 1.94 0.88 21 7.18 6.5 11121
49 1985 1.84 0.85 21 7.32 5.9 11285
49 1986 1.88 0.82 21 7.43 6 11340
49 1987 1.76 0.8 21 7.55 6.4 11389
49 1988 1.76 0.77 21 7.85 4.9 11735
50 1982 2.06 0.71 18 7.68 6.9 12064
50 1983 1.79 0.68 18 7.91 6.9 12187
50 1984 2.15 0.66 18 8.31 5.2 12680
50 1985 2.15 0.63 18 8.76 4.8 13112
50 1986 2.01 0.62 20 8.99 4.7 13741
50 1987 2.17 0.6 21 9.2 3.6 14325
50 1988 2.32 0.57 21 9.97 2.8 14728
51 1982 1.61 0.76 21 7.55 7.7 13878
51 1983 1.62 0.73 21 7.61 6.1 14299
51 1984 1.8 0.7 21 7.9 5 14907
51 1985 1.71 0.67 21 8.4 5.6 15323
51 1986 1.94 0.66 21 8.87 5 15915
51 1987 1.73 0.64 21 9.29 4.2 16486
51 1988 1.78 0.61 21 9.55 3.9 17012
53 1982 1.75 0.23 21 7.31 12.1 14342
53 1983 1.62 0.23 21 8.4 11.2 14534
53 1984 1.72 0.22 21 7.87 9.5 14758
53 1985 1.69 0.21 21 7.8 8.1 14910
53 1986 1.58 0.21 21 8.17 8.2 15376
53 1987 1.72 0.2 21 8.49 7.6 15630
53 1988 1.67 0.19 21 9 6.2 15855
54 1982 2.29 0.48 18 5.57 13.9 10748
54 1983 2.17 0.46 19 5.96 18 10452
54 1984 2.25 0.44 19 6.49 15 10642
54 1985 2.17 0.42 19 6.54 13 10669
54 1986 2.3 0.41 20 6.89 11.8 10889
54 1987 2.48 0.4 21 7.24 10.8 10992
54 1988 2.45 0.38 21 7.4 9.9 11295
55 1982 1.62 0.17 18 6.91 10.7 13214
55 1983 1.53 0.17 18 7.18 10.4 13291
55 1984 1.73 0.16 19 7.43 7.3 13819
55 1985 1.56 0.15 19 7.68 7.2 13952
55 1986 1.56 0.15 20 8.04 7 14352
55 1987 1.66 0.14 21 8.36 6.1 14720
55 1988 1.66 0.14 21 8.75 4.3 14941
56 1982 3.94 0.05 19 10.35 5.8 14600
56 1983 3.35 0.05 19 9.8 8.4 13575
56 1984 3.06 0.05 19 9.99 6.3 13456
56 1985 2.99 0.05 19 10.61 7.1 13595
56 1986 3.31 0.05 19 10.62 9 13127
56 1987 2.63 0.05 19 10.95 8.6 12719
56 1988 3.24 0.04 20 11.81 6.3 13098

Solution

Here the explanatory variables which are affecting on the traffiv fatility rate are beertax,mlda and unrate.

We want to test the hypothesis that ,

H0 :Bj = 0 Vs H1 : Bj 0. (where Bj is the regression coefficient)

Test statistic for this is,

t = b / SEb with n - 2 degrees of freedom.

Where SEb = standard error of b.

b = regression coefficient.

n = total number of observations.

The data is given in the problem.

The output for this data by using minitab is,

Command : stat ==>regression ==>regression ==>response=y ==>predictors =x1,x2,x3 ==> graphs ==>four in one ==>results ==>second option==>ok

This will gives us the following output as

Regression Analysis: y versus x1, x2, x3

The regression equation is
y = - 6.70 + 0.029 x1 + 0.644 x2 - 0.341 x3


Predictor Coef SE Coef T P
Constant -6.697 2.236 -3.00 0.003
x1 0.0289 0.1889 0.15 0.879
x2 0.6440 0.1047 6.15 0.000
x3 -0.34054 0.03677 -9.26 0.000

S = 1.64648 R-Sq = 33.0% R-Sq(adj) = 32.4%


Analysis of Variance

Source DF SS MS F P
Regression 3 443.98 147.99 54.59 0.000
Residual Error 332 900.02 2.71
Total 335 1344.00

Here we use level of significance = 0.05

We see that p-value for variable x2 and x3 are less than 0.05 so we reject null hypothesis at 5 % level of significance and for variable x1 p-value> 0.05 so fail to reject null hypothesis.

Conclusion :

For x2 and x3 :regression coefficient for x2 and x3 are differ from 0.

For x1 : regression coefficient for x1 may be 0.

Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze
Assignment IIf you can do this for me I will give it a thumbs up 1. Data is below Choose three explanatory variables to model the traffic fatality rate; analyze

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site