584 For a normal random variable X with a mean of 8 and stan

5.84 For a normal random variable X with a mean of 8 and standard deviation of 2, find a number x0 such that the following probabilities are obtained.

Solution

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.2      
          
Then, using table or technology,          
          
z =    -0.841621234      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    8      
z = the critical z score =    -0.841621234      
s = standard deviation =    2      
n = sample size =    1      
Then          
          
x = critical value =    6.316757533   [ANSWER, A]

**************************

B.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.72      
          
Then, using table or technology,          
          
z =    0.582841507      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    8      
z = the critical z score =    0.582841507      
s = standard deviation =    2      
n = sample size =    1      
Then          
          
x = critical value =    9.165683015   [ANSWER, B]

****************************

C.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.95      
          
Then, using table or technology,          
          
z =    1.644853627      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    8      
z = the critical z score =    1.644853627      
s = standard deviation =    2      
n = sample size =    1      
Then          
          
x = critical value =    11.28970725   [ANSWER, C]

********************************

D.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.05      
          
Then, using table or technology,          
          
z =    -1.644853627      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    8      
z = the critical z score =    -1.644853627      
s = standard deviation =    2      
n = sample size =    1      
Then          
          
x = critical value =    4.710292746   [ANSWER, D]
          
************************************  

 5.84 For a normal random variable X with a mean of 8 and standard deviation of 2, find a number x0 such that the following probabilities are obtained. Solution
 5.84 For a normal random variable X with a mean of 8 and standard deviation of 2, find a number x0 such that the following probabilities are obtained. Solution

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site