Compare the following two parameterizations of a circle pt
     Compare the following two parameterizations of a circle:  p(t) = [cos(t) sin(t)], 0 lessthanorequalto t lessthanorequalto 1  p(t) = [1-t^2/1+t^2 2t/1+t^2], -infinity lessthanorequalto t lessthanorequalto infinity  Verify that both parameterizations represent the circle  Evaluate the \"speed\"  for each parameterization. Which parameterization would you use if you need to generate points at regular arc-length intervals (for example, to draw the curve on the screen)?    #include     #define MAX 20    void maxheapify(int *, int, int);    int* buildmaxheap(int *, int);    void main()    {        int i, t, n;            int *a = calloc(MAX, sizeof(int));        int *m = calloc(MAX, sizeof(int));        printf(\"Enter no of elements in the array\ \");        scanf(\"%d\", &n);        printf(\"Enter the array\ \");        for (i = 0; i < n; i++) {            scanf(\"%d\", &a[i]);        }        m = buildmaxheap(a, n);        printf(\"The heap is\ \");        for (t = 0; t < n; t++) {            printf(\"%d\ \", m[t]);        }    }    int* buildmaxheap(int a[], int n)    {        int heapsize = n;        int j;        for (j = n/2; j >= 0; j--) {            maxheapify(a, j, heapsize);        }        return a;    }    void maxheapify(int a[], int i, int heapsize)    {        int temp, largest, left, right, k;        left = (2*i+1);        right = ((2*i)+2);        if (left >= heapsize)            return;        else {            if (left < (heapsize) && a[left] > a[i])                 largest = left;            else                largest = i;            if (right < (heapsize) && a[right] > a[largest])                  largest = right;            if (largest != i) {                temp = a[i];                a[i] = a[largest];                a[largest] = temp;                maxheapify(a, largest, heapsize);            }        }    }   
![Compare the following two parameterizations of a circle: p(t) = [cos(t) sin(t)], 0 lessthanorequalto t lessthanorequalto 1 p(t) = [1-t^2/1+t^2 2t/1+t^2], -infi  Compare the following two parameterizations of a circle: p(t) = [cos(t) sin(t)], 0 lessthanorequalto t lessthanorequalto 1 p(t) = [1-t^2/1+t^2 2t/1+t^2], -infi](/WebImages/21/compare-the-following-two-parameterizations-of-a-circle-pt-1047854-1761545307-0.webp) 
    
  Solution
#include![Compare the following two parameterizations of a circle: p(t) = [cos(t) sin(t)], 0 lessthanorequalto t lessthanorequalto 1 p(t) = [1-t^2/1+t^2 2t/1+t^2], -infi  Compare the following two parameterizations of a circle: p(t) = [cos(t) sin(t)], 0 lessthanorequalto t lessthanorequalto 1 p(t) = [1-t^2/1+t^2 2t/1+t^2], -infi](/WebImages/21/compare-the-following-two-parameterizations-of-a-circle-pt-1047854-1761545307-0.webp)
