Water rho 998 kgm3 and mu 0001002 Pa s flows from a large
Solution
For 2\" schedule 40 commercial steel pipe, Inner Dia D = 2.067\" = 0.172 ft = 0.0524 m
Cross-section area A = pi/4 * D^2 = 3.14 / 4 * 0.0524^2 = 0.002155 m2
Mass flow rate m = rho*A*V
6.2 = 998*0.002155*V
Velocity V = 2.88 m/s
Reynolds number Re = rho*V*D / meu
= 998*2.88*0.0524 / 0.001002
Re = 150309
Absolute roughness for commercial steel = 0.00015 ft
Relative roughness = 0.00015 / 0.172 = 0.000872
From Moody diagram, for Re = 6186 and rel roughness = 0.000872, we get friction factor f = 0.021
For 50% open gate valve, K = 2.1
For 45 deg elbow, K = 0.4
For threaded 90 deg elbow, K = 1.5
For sharp entrance, K = 0.5
For sharp exit, K = 1
Total K = 2.1 + 2*0.4 + 2*1.5 + 0.5 + 1 = 7.4
Total pipe length L = 15 + 10 + 10+ 20 + 30 + H = 85+H metre
P1 - (fL/D + K)*rho*V2 / 2 + (Power / Q) * Eff = rho*g*H
200*103 - (0.021*(85+H) / 0.0524 + 7.4) * (998*2.882 / 2) + (1000 / (0.002155*2.88) * 0.75) = 998*9.81*H
200000- (0.021*(85+H) / 0.0524 + 7.4) * 4138.9 + 120843 = 998*9.81*H
Solving H = 13.03 m

