For a prime p of the form 4k 1 prove 12 middot 32 middot 52
For a prime p of the form 4k + 1, prove 1^2 middot 3^2 middot 5^2 ... (p - 2)^2 identicalto -1 (mod p). Today is Thursday, what is the day of the week after 1111^1111 days?
Solution
For this we need to find 1111^1111 mod 7
1111=-2 mod 7
So, 1111^1111 mod 7=(-2)^1111 mod 7=(-2)^{1110+1} mod 7
= ((-2)^1110)*2=((-2^3)^370)*2 mod 7
=((-8)^370)*2 mod 7
= ((-1)^370)*2 mod 7
=1*2=2 mod 7
So effectively 2 days after Thursday which is Sunday.
