2 A certain packet of mixed lupinus seeds will produce flowe
2. A certain packet of mixed lupinus seeds will produce flowers that are blue (aka bluebonnet), maroon, and white in the ratio of 6:3:1 (one flower per seed). A total of 100 seeds are planted and all germinate, yielding the following results
Blue
Maroon
White
52
36
12
If the null hypotheses is true (the flowers bloom in the 6:3:1) ratio, what are the expected counts for each color of flower for the 100 seeds?
Complete the chi-square goodness of fit test for this data.
Write a conclusion to this data.
| Blue | Maroon | White | 
| 52 | 36 | 12 | 
Solution
a)
The expected counts are 60, 30, 10, respectively for blue, maroon, white.
*******************
b)
Doing an observed/expected value table,          
 O   E   (O - E)^2/E  
 52   60   1.066666667  
 36   30   1.2  
 12   10   0.4  
Using chi^2 = Sum[(O - E)^2/E],          
           
 chi^2 =    2.666666667      
           
 As df = a - 1,           
           
 a =    3      
 df = a - 1 =    2      
           
 Then, the critical chi^2 value is          
           
 significance level =    0.05      
 chi^2(crit) =    5.991464547      
           
 Also, the p value is          
           
 p =    0.263597138      
           
 Thus, comparing chi^2 and chi^2(crit) [or, p > 0.05], we   FAIL TO REJECT THE NULL HYPOTHESIS.      
           
 Thus, there is no significant evidence that the flowers bloom at a ratio that is not 6:3:1. [CONCLUSION]


