a2 c1 B10 degrees 2 Find the area of the trianglegiven the f
a=2, c=1, B=10 degrees
2.) Find the area of the triangle,given the following.
a=5, b=8, c=9
3.) write the expression in the standard form a+bi.
4.) Find the unit vector in the same direction as the vector v= -5i+12j.
Solution
1)a=2, c=1, B=10o
by law of cosines
b2=a2+c2-2accosB
b2=22+12-2*2*1*cos10o
b2=1.06077
b=1.03
by law of sines a/sinA=b/sinB=c/sinC
2/sinA=1.03/sin10o=1/sinC
sinA=(2/1.03)sin10o
A=160.3o
sinC=(1/1.03)sin10o
C=9.7o,
-------------------------------------------------------
2)a=5, b=8, c=9
s=(a+b+c)/2=(5+8+9)/2 =11
area of triangle=[s(s-a)(s-b)(s-c)]
area of triangle=[11(11-5)(11-8)(11-9)]
area of triangle=396
area of triangle=19.9 square units
