Establish the identity 1 cos theta1 cos theta csc theta
     Establish the identity.  1 - cos theta/1 + cos theta = (csc theta - cot theta)^2  Starting with the right side, which shows the key steps in establishing the identity?  (csc theta - cot theta)^2 = 1/sin^2 theta - 2 cos theta/sin^2 theta + cos^2 theta/sin^2 theta = (1 - cos theta)^2/1 - sin^2 theta = 1 - cos theta/1 + cos theta  (csc theta - cot theta)^2 = csc^2 theta - cot^2 theta = (1 - cos theta)^2/1 - cos^2 theta = 1 - cos theta/1 + cos theta  (csc theta - cot theta)^2 = csc^2 theta - cot^2 theta = (1 - cos theta)^2/1 - sin^2 theta = 1 - cos theta/1 + cos theta  (csc theta - cot theta)^2 = 1/sin^2 theta - 2 cos theta/sin^2 theta + cos^2 theta/sin^2 theta = (1 - cos theta)^2/1 - cos^2 theta = 1 - cos theta/1 + cos theta 
  
  Solution
(1- costheta)/(1+costheta) = ( csctheta - cottheta)^2
RHS : expaning the bracket : ( csctheta - cottheta)^2
= (1/sintheta - costheta/sintheta)^2
= 1/sin^2theta + cos^2theta/sin^2theta - 2costheta/sin^2theta
= (1 - costheta)^2/sin^2theta
= (1- costheta)^2/(1 - cos^2theta)
= (1-costheta)/(1+costheta)
Option D

