If fx 3x 3 and gx x2 3x 4 then find f g x f g x f mid
If f(x) = 3x + 3 and g(x) = x^2 - 3x - 4, then find: (f + g) (x) (f - g) (x) (f middot g) (x) (f/g) (x) (f g) (x) (g f) (x) f^-1 (x)
Solution
given f(x)=3x +3 ,g(x)=x2-3x -4
a)(f+g)(x)=f(x)+g(x)
=3x +3 +x2-3x -4
=x2 -1
b)(f-g)(x)=f(x)-g(x)
=3x +3 -x2+3x +4
=-x2 +6x+7
c)(f.g)(x)=f(x).g(x)
=(3x +3)(x2-3x -4)
=3x3-9x2 -12x +3x2-9x -12
=3x3-6x2 -21x -12
d)
(f/g)(x)=f(x)/g(x)
=(3x +3)/(x2-3x -4)
=3(x+1)/((x-4)(x+1))
=3/(x-4)
e)(fog)(x)
=f(g(x))
=3(x2-3x -4)+3
=3x2-9x -12+3
=3x2-9x -9
f)(gof)(x)
=g(f(x))
=(3x+3)2-3(3x+3) -4
=9x2+18x+9-9x-9+4
=9x2+9x+4
g)let f(x)=y
=>x=f-1(y)
3x+3=y
x=(y-3)/3
f-1(y)=(y-3)/3
f-1(x)=(x-3)/3

