consider the random variable x whose probability distributio
consider the random variable x whose probability distribution is given below
Find E(X), E(1/X), E(X^2-1), V(X)
| x | 1 | 2 | 3 | 4 |
| P(x) | 0.4 | 0.3 | 0.2 | 0.1 |
Solution
x
p
1/x
x2-1
p*X
p*1/x
p*(X2-1)
1
0.4
1
0
0.4
0.4
0
2
0.3
0.5
3
0.6
0.15
0.9
3
0.2
0.333333
8
0.6
0.066667
1.6
4
0.1
0.25
15
0.4
0.025
1.5
total
1
2
0.641667
4
E(X) = 2
E(1/X) = 0.641667
E(X2-1) = 4
X
P(X)
x*p(x)
(x-mean)2*p(x)
1
0.4
0.4
0.4
2
0.3
0.6
0
3
0.2
0.6
0.2
4
0.1
0.4
0.4
Total
1.000
2
1
V(X) =sum (x-mean)2 * p(x) =1
| x | p | 1/x | x2-1 | p*X | p*1/x | p*(X2-1) | |
| 1 | 0.4 | 1 | 0 | 0.4 | 0.4 | 0 | |
| 2 | 0.3 | 0.5 | 3 | 0.6 | 0.15 | 0.9 | |
| 3 | 0.2 | 0.333333 | 8 | 0.6 | 0.066667 | 1.6 | |
| 4 | 0.1 | 0.25 | 15 | 0.4 | 0.025 | 1.5 | |
| total | 1 | 2 | 0.641667 | 4 |


