Solve the equation giving the exact solutions which lie in 0
Solve the equation, giving the exact solutions which lie in [0, 2pi).
1) cos(2x)= cos(x)
2)3cos(2x)= sin(x)+2
Solve the equation, giving the exact solutions which lie in [0, 2pi).
1) cos(2x)= cos(x)
2)3cos(2x)= sin(x)+2
1) cos(2x)= cos(x)
2)3cos(2x)= sin(x)+2
Solution
1) cos(2x)= cos(x)
2cos^2x - 1 = cosx
2cos^2x - 1 - cosx = 0
2cos^2x -2cosx +cosx -1 =0
2cosx( cosx-1) +1(cosx -1) =0
(2cosx +1)(cosx -1) =0
cosx = -1/2
x = 2pi/.3 , 4pi/3
cosx =1
x = 0
Solution : x= 0, 2pi/3 , 4pi/3
2)3cos(2x)= sin(x)+2
3(1 -2sin^2x) = sinx +2
-6sin^2x -sinx +1 =0
-6sin^2x -3sinx +2cosx +1=0
-3sinx( 2sinx +1) +1(2cosx +1) =0
( 1-3sinx)(1+2cosx) =0
sinx = 1/3 ; x= 0.339 , pi -0.339 = 2.80
x = 0.339 , 2.80 radians
cosx = -1/2
x = 2pi/.3 , 4pi/3
Solution : x= 2pi/.3 , 4pi/3, 0.339 , 2.80
