Construct a 90 confidence interval for the mean difference D

Construct a 90% confidence interval for the mean difference D.. (Round intermediate calculations to 4 decimal places and final answer to 2 decimal places.)

Using the confidence interval, test whether the mean difference differs from zero.

A sample of 31 paired observations generates the following data: \"formula121.mml\" = 2.0 and \"formula122.mml\" = 4.0. Assume a normal distribution. Use Table 2.

Solution

Note that              
              
Lower Bound = dbar - z(alpha/2) * s / sqrt(n)              
Upper Bound = dbar + z(alpha/2) * s / sqrt(n)              
              
where              
              
X = sample mean =    2          
z(alpha/2) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    2          
n = sample size =    31          
              
Thus,              
              
Lower bound =    1.409151135          
Upper bound =    2.590848865          
              
Thus, the confidence interval is              
              
(1.41,2.59) [ANSWER, PART A]

*******************************

As 0 is not a part of this interval, then:

OPTION 1: The mean difference differs from zero.

Construct a 90% confidence interval for the mean difference D.. (Round intermediate calculations to 4 decimal places and final answer to 2 decimal places.) Usin

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site