Solve a dydx yx xex b dydx sinx yexy xexy1 with step by st
Solve
a.) (dy/dx) = (y/x) +xex b.) (dy/dx) = (sinx -yexy)/( xexy+1)
with step by step solution please
Solution
a)Given: dy/dx=(y/x)+xex
if it is f(x)=dy/dx=(y/x)+xex
f\'\'(x)=yd/dx(1/x)+xd/dx(ex)+ex(x)
=(-y/x2)+x.ex+ex.
b)dy/dx=(sinx -yexy)/( xexy+1)
if it is f(x)=dy/dx=(sinx -yexy)/( xexy+1)
then f\'(x)=[(x.exy+1)d/dx(sin(x)-y.exy)-d/dx(x.exy+1)(sin(x)-y.exy)]/(x.exy+1)2
=[(x.exy+1)d/dxsin(x)-yd/dxexy-d/dxx.exy(sin(x)-y.exy)]/(x.exy+1)2
=[(x.exy+1)(cos(x))-yexyd/dx(xy)-(xd/dxexy+exyd/dxx)(sin(x)-y.exy)]/(x.exy+1)2
=[(x.exy+1)(cos(x))-y.yexy-(xexyd/dx(xy)+exy)(sin(x)-y.exy)]/(x.exy+1
=[(x.exy+1)(cos(x))-y2exy-(xyexy+exy)(sin(x)-y.exy)]/(x.exy+1)2
=[(x.exy+1)]/(x.exy+1) - [y2exy-(xyexy+exy)(sin(x)-y.exy)]/(x.exy+1)2
