Find all critical points of the function fxy 16y 13x3 xy4
Find all critical points of the function f(x,y) = 16y - (1/3(x^3)) - x(y^4) +5.
Indicate whether each such point gives a local maximum, a local minimum, or whether it is a saddle point.
Solution
df/dx=0
 
 x^2 -y^3=0
 x^2=y^3
 
 df/dy=0
 16-4xy^3=0
 
 16=4xy^3=4x^3
 
 4=x^3
 x=4^(1/3)
 y^3=x^2=4^(2/3)
 y=4^(2/9)
 
 So the critical point is x0=4^(1/3)
 y0=4^(2/9)
 
 A=d2f/dx2=2x>0
B=d2f/dxdy=-3y2
C=d2f/dy2=-12xy^2
B^2-AC=9y^4-24x^2y^2=3y^2(3y^2-8x^2)<0
for point (x0,y0) so it is a local minimum value

